Optimal Stochastic Impulse Control

Christoph Belak
Department IV – Mathematics
University of Trier
Germany

Joint work with Sören Christensen (University of Hamburg) and Frank Seifried (University of Trier).

Mathematical Colloquium University of Trier
December 08, 2016
(1) Impulse Control Problems and Quasi-Variational Inequalities
(2) Superharmonic Functions and the Stochastic Perron Method
(3) Applications and Work in Progress
The General Impulse Control Problem
Consider an \mathbb{R}^n-valued system $X = X^\Lambda_{t,x}$

$$X(t) = x,$$
$$dX(u) = \mu(X(u)) du + \sigma(X(u)) \, dW(u),$$
Consider an \mathbb{R}^n-valued system $X = X_{t,x}^\Lambda$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

\[
X(t) = x, \\
\text{d}X(u) = \mu(X(u))\text{d}u + \sigma(X(u)) \text{d}W(u), \quad u \in [\tau_k, \tau_{k+1}), \\
X(\tau_k) = \Gamma(X(\tau_k^-), \Delta_k),
\]
Consider an \mathbb{R}^n-valued system $X = X^\Lambda_{t,x}$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

$$X(t) = x,$$
$$dX(u) = \mu(X(u))du + \sigma(X(u))dW(u), \quad u \in [\tau_k, \tau_{k+1}),$$
$$X(\tau_k) = \Gamma(X(\tau_k-), \Delta_k),$$

where

- the impulses Δ_k are chosen from a set $Z(X(\tau_k-)) \subset \mathbb{R}^m$, and
Consider an \mathbb{R}^n-valued system $X = X_{t,x}^\Lambda$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

$$
X(t) = x,
$$
$$
dX(u) = \mu(X(u))du + \sigma(X(u))dW(u), \quad u \in [\tau_k, \tau_{k+1}),
$$
$$
X(\tau_k) = \Gamma(X(\tau_{k-}), \Delta_k),
$$

where

- the impulses Δ_k are chosen from a set $Z(X(\tau_{k-})) \subset \mathbb{R}^m$, and
- the impulses do not accumulate, i.e. $\mathbb{P}[\lim_{k \to \infty} \tau_k > T] = 1$.

The objective is to maximize $V(t,x) = \sup_{\Lambda \in \mathcal{A}} \mathbb{E} \left[\sum_{k \in \mathbb{N}} K(X_{t,x}^\Lambda(\tau_k-), \Delta_k) 1\{\tau_k \leq T\} + g(X_{t,x}^\Lambda(T)) \right]$.

The General Impulse Control Problem

Consider an \mathbb{R}^n-valued system $X = X_{t,x}^\Lambda$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

\[
X(t) = x, \\
\mathrm{d}X(u) = \mu(X(u))\mathrm{d}u + \sigma(X(u)) \, \mathrm{d}W(u), \quad u \in [\tau_k, \tau_{k+1}), \\
X(\tau_k) = \Gamma(X(\tau_k^-), \Delta_k),
\]

where

- the impulses Δ_k are chosen from a set $Z(X(\tau_k^-)) \subset \mathbb{R}^m$, and
- the impulses do not accumulate, i.e. $\mathbb{P}[\lim_{k \to \infty} \tau_k > T] = 1$.

The objective is to maximize

\[
\mathcal{V}(t, x) = \sup_{\Lambda \in \mathcal{A}(t,x)} \mathbb{E}\left[\sum_{k \in \mathbb{N}} K\left(X_{t,x}^\Lambda(\tau_k^-), \Delta_k\right) \mathbb{1}_{\{\tau_k \leq T\}} + g\left(X_{t,x}^\Lambda(T)\right) \right].
\]
Stochastic Impulse Control Problems
Stochastic Impulse Control Problems

\[
X(t) \quad X^\Lambda(t)
\]
Stochastic Impulse Control Problems
Stochastic Impulse Control Problems

\[X(t) \]

\[X^\Lambda(t) \]
Stochastic Impulse Control Problems
The Quasi-Variational Inequalities
Suppose that the system is in state x at time t.
The Maximum Operator

Suppose that the system is in state x at time t and the controller is forced to make an impulse

$$(t, \Gamma(x, \Delta)) + K(x, \Delta)$$
The Maximum Operator

Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards.

$$V(t, \Gamma(x, \Delta)) + K(x, \Delta)$$
The Maximum Operator

Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards. The best immediate impulse is

$$\sup_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta),$$

where $Z(x)$ denotes the set of admissible impulses Δ in state x.

The Maximum Operator

Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards. The best immediate impulse is

$$\mathcal{M} \mathcal{V}(t, x) \triangleq \sup_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta),$$

where $Z(x)$ denotes the set of admissible impulses Δ in state x.

In general, it may not be optimal to make an immediate impulse. Thus $\mathcal{V}(t, x) \geq \mathcal{M} \mathcal{V}(t, x)$.

If $\mathcal{V}(t, x) = \mathcal{M} \mathcal{V}(t, x)$, an impulse is expected to be optimal. A candidate is $\Delta^* = \operatorname{arg\ max}_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta)$.

Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards. The best immediate impulse is

$$\mathcal{MV}(t, x) \triangleq \sup_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta),$$

where $Z(x)$ denotes the set of admissible impulses Δ in state x.

In general, it may not be optimal to make an immediate impulse. Thus

$$\mathcal{V}(t, x) \geq \mathcal{MV}(t, x).$$
Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards. The best immediate impulse is

$$\mathcal{M} V(t, x) \triangleq \sup_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta),$$

where $Z(x)$ denotes the set of admissible impulses Δ in state x.

In general, it may not be optimal to make an immediate impulse. Thus

$$\mathcal{V}(t, x) \geq \mathcal{M} V(t, x).$$

If $\mathcal{V}(t, x) = \mathcal{M} V(t, x)$, an impulse is expected to be optimal.
The Maximum Operator

Suppose that the system is in state x at time t and the controller is forced to make an impulse and behaves optimally afterwards. The best immediate impulse is

$$\mathcal{MV}(t, x) \triangleq \sup_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta),$$

where $Z(x)$ denotes the set of admissible impulses Δ in state x.

In general, it may not be optimal to make an immediate impulse. Thus

$$\mathcal{V}(t, x) \geq \mathcal{MV}(t, x).$$

If $\mathcal{V}(t, x) = \mathcal{MV}(t, x)$, an impulse is expected to be optimal. A candidate is

$$\Delta^* = \arg \max_{\Delta \in Z(x)} \mathcal{V}(t, \Gamma(x, \Delta)) + K(x, \Delta).$$
The Infinitesimal Generator

Let the state process X run uncontrolled for a positive amount of time, say on the interval $[t, t + h]$.
Let the state process X run \textbf{uncontrolled} for a positive amount of time, say on the interval $[t, t + h]$. Time consistency lets us expect that

$$
\mathcal{V}(t, x) \geq \mathbb{E}[\mathcal{V}(t + h, X_{t,x}(t + h))]
$$
The Infinitesimal Generator

Let the state process \(X \) run **uncontrolled** for a positive amount of time, say on the interval \([t, t + h]\). Time consistency lets us expect that

\[
\mathcal{V}(t, x) \geq \mathbb{E}[\mathcal{V}(t + h, X_{t,x}(t + h))]
\]

and equality holds if it is **not optimal** to make an impulse in the interval \([t, t + h]\).
Let the state process X run **uncontrolled** for a positive amount of time, say on the interval $[t, t + h]$. Time consistency lets us expect that

$$
\mathcal{V}(t, x) \geq \mathbb{E}[\mathcal{V}(t + h, X_{t,x}(t + h))]
$$

$$
= \mathbb{E}[\mathcal{V}(t, x) - \int_t^{t+h} \mathcal{L}\mathcal{V}(u, X_{t,x}(u))du]
$$

and equality holds if it is **not optimal** to make an impulse in the interval $[t, t + h]$.

$$
\mathcal{L}\mathcal{V}(t, x) \triangleq -\partial_t \mathcal{V}(t, x) - \mu(x)D_x \mathcal{V}(t, x) - \frac{1}{2} \text{tr}[\sigma(x)\sigma(x)^\top D_x^2 \mathcal{V}(t, x)]
$$
Let the state process X run uncontrolled for a positive amount of time, say on the interval $[t, t + h]$. Time consistency lets us expect that

$$
\mathcal{V}(t, x) \geq \mathbb{E}[\mathcal{V}(t + h, X_{t,x}(t + h))]
$$

$$
= \mathbb{E}[\mathcal{V}(t, x) - \int_{t}^{t+h} \mathcal{L}\mathcal{V}(u, X_{t,x}(u))du]
$$

and equality holds if it is not optimal to make an impulse in the interval $[t, t + h]$.

Dividing by h and sending $h \downarrow 0$ we find that

$$
\mathcal{L}\mathcal{V}(t, x) \triangleq -\partial_t \mathcal{V}(t, x) - \mu(x)D_x\mathcal{V}(t, x) - \frac{1}{2} \text{tr} \left[\sigma(x)\sigma(x)^\top D_x^2\mathcal{V}(t, x) \right] \geq 0
$$
Let the state process X run **uncontrolled** for a positive amount of time, say on the interval $[t, t + h]$. Time consistency lets us expect that

$$V(t, x) \geq \mathbb{E}[V(t + h, X_{t,x}(t + h))]$$

$$= \mathbb{E}[V(t, x) - \int_t^{t+h} \mathcal{L}V(u, X_{t,x}(u))du]$$

and equality holds if it is **not optimal** to make an impulse in the interval $[t, t + h]$.

Dividing by h and sending $h \downarrow 0$ we find that

$$\mathcal{L}V(t, x) \triangleq -\partial_t V(t, x) - \mu(x)D_x V(t, x) - \frac{1}{2} \text{tr} \left[\sigma(x)\sigma(x)^\top D_x^2 V(t, x) \right] \geq 0$$

and equality holds **if and only if** it is not optimal to make a transaction.
Thus, we have argued that \mathcal{V} should solve the quasi-variational inequalities (QVIs)

$$\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.$$
The Quasi-Variational Inequalities

Thus, we have argued that \mathcal{V} should solve the quasi-variational inequalities (QVIs)

$$\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.$$

Moreover, a candidate optimal control Λ^* is determined by the sets

$$\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M}\mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M}\mathcal{V} \}.$$
Thus, we have argued that \mathcal{V} should solve the **quasi-variational inequalities** (QVIs)

$$\min\{\mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x)\} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.$$

Moreover, a **candidate optimal control** Λ^* is determined by the sets

$$\mathcal{C} \triangleq \{\mathcal{V} > \mathcal{M}\mathcal{V}\} \quad \text{and} \quad \mathcal{I} \triangleq \{\mathcal{V} = \mathcal{M}\mathcal{V}\}.$$
Thus, we have argued that \mathcal{V} should solve the **quasi-variational inequalities** (QVIs)

$$\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.$$

Moreover, a **candidate optimal control** Λ^* is determined by the sets

$$\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M}\mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M}\mathcal{V} \}.$$
The Quasi-Variational Inequalities

Thus, we have argued that \(\mathcal{V} \) should solve the quasi-variational inequalities (QVIs)

\[
\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.
\]

Moreover, a candidate optimal control \(\Lambda^* \) is determined by the sets

\[
\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M}\mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M}\mathcal{V} \}.
\]
Thus, we have argued that \mathcal{V} should solve the \textit{quasi-variational inequalities} (QVIs)
\[
\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.
\]
Moreover, a \textbf{candidate optimal control} Λ^* is determined by the sets
\[
\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M}\mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M}\mathcal{V} \}.
\]
Thus, we have argued that V should solve the \textit{quasi-variational inequalities} (QVIs)

$$\min \{ L V(t, x), V(t, x) - M V(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n. $$

Moreover, a \textit{candidate optimal control} Λ^* is determined by the sets

$$C \triangleq \{ V > M V \} \quad \text{and} \quad I \triangleq \{ V = M V \}. $$
Thus, we have argued that \(V \) should solve the **quasi-variational inequalities** (QVIs)

\[
\min \{ \mathcal{L}V(t, x), V(t, x) - M V(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.
\]

Moreover, a **candidate optimal control** \(\Lambda^* \) is determined by the sets

\[
\mathcal{C} \triangleq \{ V > M V \} \quad \text{and} \quad \mathcal{I} \triangleq \{ V = M V \}.
\]
Thus, we have argued that \mathcal{V} should solve the **quasi-variational inequalities** (QVIs)

$$\min\{\mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x)\} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.$$

Moreover, a **candidate optimal control** Λ^* is determined by the sets

$$C \triangleq \{\mathcal{V} > \mathcal{M}\mathcal{V}\} \quad \text{and} \quad I \triangleq \{\mathcal{V} = \mathcal{M}\mathcal{V}\}.$$
The Quasi-Variational Inequalities

Thus, we have argued that \(V \) should solve the **quasi-variational inequalities** (QVIs)

\[
\min \{ \mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x) \} = 0 \quad (t, x) \in [0, T) \times \mathbb{R}^n.
\]

Moreover, a **candidate optimal control** \(\Lambda^* \) is determined by the sets

\[
\mathcal{C} \triangleq \{ V > \mathcal{M}V \} \quad \text{and} \quad \mathcal{I} \triangleq \{ V = \mathcal{M}V \}.
\]
So, to solve the impulse control problem, we need to solve the QVIs

\[
\min \{ \mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x) \} = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n,
\]
\[
V(T, x) = g(x), \quad x \in \mathbb{R}^n.
\]
So, to solve the impulse control problem, we need to solve the QVIs
\[
\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} = 0, \\
(t, x) \in [0, T) \times \mathbb{R}^n, \\
\mathcal{V}(T, x) = g(x), \quad x \in \mathbb{R}^n.
\]
Once the equation is solved, determine the sets
\[
\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M}\mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M}\mathcal{V} \}.
\]
So, to solve the impulse control problem, we need to solve the QVIs

\[
\min \{ \mathcal{L}V(t, x), V(t, x) - M V(t, x) \} = 0, \quad (t, x) \in [0, T] \times \mathbb{R}^n,
\]
\[
V(T, x) = g(x), \quad x \in \mathbb{R}^n.
\]

Once the equation is solved, determine the sets

\[C \triangleq \{ V > M V \} \quad \text{and} \quad I \triangleq \{ V = M V \}.
\]

In practice, one proceeds as follows:
So, to solve the impulse control problem, we need to solve the QVIs

$$\min\{\mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x)\} = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n,$$

$$V(T, x) = g(x), \quad x \in \mathbb{R}^n.$$

Once the equation is solved, determine the sets

$$\mathcal{C} \triangleq \{V > \mathcal{M}V\} \quad \text{and} \quad \mathcal{I} \triangleq \{V = \mathcal{M}V\}.$$

In practice, one proceeds as follows:

(i) Guess the set $$\mathcal{C} \triangleq \{V > \mathcal{M}V\}.$$
So, to solve the impulse control problem, we need to solve the QVIs

\[
\min\{\mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x)\} = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n, \\
V(T, x) = g(x), \quad x \in \mathbb{R}^n.
\]

Once the equation is solved, determine the sets

\[
\mathcal{C} \triangleq \{V > \mathcal{M}V\} \quad \text{and} \quad \mathcal{I} \triangleq \{V = \mathcal{M}V\}.
\]

In practice, one proceeds as follows:

(i) Guess the set \(\mathcal{C} \triangleq \{V > \mathcal{M}V\}\).

(ii) Solve \(\mathcal{L}V(t, x) = 0\) on \(\mathcal{C}\).
So, to solve the impulse control problem, we need to solve the QVIs

$$\min\{\mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x)\} = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n,$$

$$V(T, x) = g(x), \quad x \in \mathbb{R}^n.$$

Once the equation is solved, determine the sets

$$\mathcal{C} \triangleq \{V > \mathcal{M}V\} \quad \text{and} \quad \mathcal{I} \triangleq \{V = \mathcal{M}V\}.$$

In practice, one proceeds as follows:

(i) Guess the set \(\mathcal{C} \triangleq \{V > \mathcal{M}V\} \).

(ii) Solve \(\mathcal{L}V(t, x) = 0 \) on \(\mathcal{C} \).

(iii) Extend the solution to all of \([0, T] \times \mathbb{R}^n\) by setting \(V = \mathcal{M}V \) outside of \(\mathcal{C} \).
So, to solve the impulse control problem, we need to solve the QVIs

\[
\min \{ \mathcal{L} \mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M} \mathcal{V}(t, x) \} = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^n, \\
\mathcal{V}(T, x) = g(x), \quad x \in \mathbb{R}^n.
\]

Once the equation is solved, determine the sets

\[
\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M} \mathcal{V} \} \quad \text{and} \quad \mathcal{I} \triangleq \{ \mathcal{V} = \mathcal{M} \mathcal{V} \}.
\]

In practice, one proceeds as follows:

(i) Guess the set \(\mathcal{C} \triangleq \{ \mathcal{V} > \mathcal{M} \mathcal{V} \} \).

(ii) Solve \(\mathcal{L} \mathcal{V}(t, x) = 0 \) on \(\mathcal{C} \).

(iii) Extend the solution to all of \([0, T] \times \mathbb{R}^n\) by setting \(\mathcal{V} = \mathcal{M} \mathcal{V} \) outside of \(\mathcal{C} \).

Problem: This rarely works. In higher dimensions, this is next to impossible. To verify that the solution of the QVIs coincides with \(\mathcal{V} \), one needs \(\mathcal{V} \in C^{1,2} \).
Superharmonic Functions and Stochastic Perron
We say that an integrable function $h : [0, T] \times \mathbb{R}^n$ is superharmonic if

$$h(t, x) \geq \mathbb{E}\left[h(\tau, X_{t,x}(\tau))\right]$$

for any choice of (t, x) and τ.
We say that an integrable function $h : [0, T] \times \mathbb{R}^n$ is superharmonic if

$$h(t, x) \geq \mathbb{E}\left[h(\tau, X_{t,x}(\tau)) \right]$$

for any choice of (t, x) and τ.

If $h \in C^{1,2}$, satisfies $\mathcal{L}h \geq 0$, and is sufficiently integrable:

$$h(t, x) = \mathbb{E}\left[h(\tau, X_{t,x}(\tau)) + \int_t^\tau \mathcal{L}h(s, X_{t,x}(s)) \, ds \right]$$
Superharmonic Functions

We say that an integrable function $h : [0, T] \times \mathbb{R}^n$ is superharmonic if

$$h(t, x) \geq \mathbb{E} \left[h(\tau, X_{t,x}(\tau)) \right]$$

for any choice of (t, x) and τ.

If $h \in C^{1,2}$, satisfies $\mathcal{L}h \geq 0$, and is sufficiently integrable:

$$h(t, x) = \mathbb{E} \left[h(\tau, X_{t,x}(\tau)) + \int_t^\tau \mathcal{L}h(s, X_{t,x}(s)) ds \right] \geq \mathbb{E} \left[h(\tau, X_{t,x}(\tau)) \right].$$

That is h is superharmonic.
Optimality Theorem

Let \mathcal{H} be the set of all $h : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ such that

- h is superharmonic,
Optimality Theorem

Let \mathcal{H} be the set of all $h : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ such that

- h is superharmonic,
- h is non-increasing in the direction of impulses, i.e. $h \geq \mathcal{M}h$,

It is straightforward to see that $h \geq V$ for all $h \in \mathcal{H}$.

Theorem (B., Christensen, Seifried (2016))

Suppose that V is continuous and $V \in \mathcal{H}$. Under some technical assumptions, the control Λ^* defined in terms of $\{V > MV\}$ and $\{V = MV\}$ is optimal if it is admissible.
Let \mathcal{H} be the set of all $h : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ such that

- h is superharmonic,
- h is non-increasing in the direction of impulses, i.e. $h \geq \mathcal{M}h$,
- h satisfies the terminal condition $h(T, \cdot) \geq g$,
Optimality Theorem

Let \mathcal{H} be the set of all $h : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ such that

- h is superharmonic,
- h is non-increasing in the direction of impulses, i.e. $h \geq \mathcal{M}h$,
- h satisfies the terminal condition $h(T, \cdot) \geq g$,
- h is upper semi-continuous.
Optimality Theorem

Let \mathcal{H} be the set of all $h : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ such that

- h is superharmonic,
- h is non-increasing in the direction of impulses, i.e. $h \geq Mh$,
- h satisfies the terminal condition $h(T, \cdot) \geq g$,
- h is upper semi-continuous.

It is straightforward to see that $h \geq \mathcal{V}$ for all $h \in \mathcal{H}$.
Optimality Theorem

Let \mathbb{H} be the set of all $h : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ such that

- h is superharmonic,
- h is non-increasing in the direction of impulses, i.e. $h \geq \mathcal{M}h$,
- h satisfies the terminal condition $h(T, \cdot) \geq g$,
- h is upper semi-continuous.

It is straightforward to see that $h \geq \mathcal{V}$ for all $h \in \mathbb{H}$.

Theorem (B., Christensen, Seifried (2016))

Suppose that \mathcal{V} is continuous and $\mathcal{V} \in \mathbb{H}$. Under some technical assumptions, the control Λ^* defined in terms of

$$\{\mathcal{V} > \mathcal{M}\mathcal{V}\} \quad \text{and} \quad \{\mathcal{V} = \mathcal{M}\mathcal{V}\}$$

is optimal if it is admissible.
The stochastic Perron method:

(1) Show that $V \triangleq \inf_{h \in \mathcal{H}} h \geq \mathcal{V}$ is an upper semi-continuous (viscosity) subsolution of the QVIs:

$$\min\{\mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x)\} \leq 0.$$
The Stochastic Perron Method

The stochastic Perron method:

(1) Show that \(\mathcal{V} \triangleq \inf_{h \in \mathcal{H}} h \geq \mathcal{V} \) is an upper semi-continuous (viscosity) subsolution of the QVIs:

\[
\min\{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} \leq 0.
\]

(2) Approximate \(\mathcal{V} \) from below by considering the impulse control problem \(\mathcal{V}_k \) restricted to at most \(k \) impulses, and show that \(\mathcal{V} \triangleq \lim_{k \to \infty} \mathcal{V}_k \) is a lower semi-continuous (viscosity) supersolution of the QVIs:

\[
\min\{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} \geq 0.
\]
The Stochastic Perron Method

The stochastic Perron method:

(1) Show that $V \triangleq \inf_{h \in H} h \geq \mathcal{V}$ is an upper semi-continuous (viscosity) subsolution of the QVIs:

$$\min \{ \mathcal{L}V(t, x), V(t, x) - \mathcal{M}V(t, x) \} \leq 0.$$

(2) Approximate V from below by considering the impulse control problem \mathcal{V}_k restricted to at most k impulses, and show that $\mathcal{V} \triangleq \lim_{k \to \infty} \mathcal{V}_k$ is a lower semi-continuous (viscosity) supersolution of the QVIs:

$$\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} \geq 0.$$

(3) Prove a comparison principle for the QVIs: If u is a subsolution and v is a supersolution of the QVIs with $u(T, \cdot) \leq v(T, \cdot)$, then $u \leq v$.

By construction, we have $V \leq \mathcal{V} \leq \mathcal{V}$. By comparison, we have the reversed inequalities. Thus $V = \mathcal{V} = \mathcal{V}$ is continuous.
The stochastic Perron method:

1. Show that \(\mathcal{V} \equiv \inf_{h \in \mathcal{H}} h \geq \mathcal{V} \) is an upper semi-continuous (viscosity) subsolution of the QVIs:

\[
\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} \leq 0.
\]

2. Approximate \(\mathcal{V} \) from below by considering the impulse control problem \(\mathcal{V}_k \) restricted to at most \(k \) impulses, and show that \(\mathcal{V} \equiv \lim_{k \to \infty} \mathcal{V}_k \) is a lower semi-continuous (viscosity) supersolution of the QVIs:

\[
\min \{ \mathcal{L}\mathcal{V}(t, x), \mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x) \} \geq 0.
\]

3. Prove a comparison principle for the QVIs: If \(u \) is a subsolution and \(v \) is a supersolution of the QVIs with \(u(T, \cdot) \leq v(T, \cdot) \), then \(u \leq v \).

4. By construction, we have \(\mathcal{V} \leq \mathcal{V} \leq \mathcal{V} \). By comparison, we have the reversed inequalities. Thus

\[\mathcal{V} = \mathcal{V} = \mathcal{V} \quad \text{is continuous.} \]
Sufficient Conditions for this to work

The stochastic Perron method works, e.g., under the following assumptions:

- μ and σ are Lipschitz continuous.
The stochastic Perron method works, e.g., under the following assumptions:

- \(\mu \) and \(\sigma \) are Lipschitz continuous.
- \(\Gamma, Z, K, \) and \(g \) are continuous.
The stochastic Perron method works, e.g., under the following assumptions:

- μ and σ are Lipschitz continuous.
- Γ, Z, K, and g are continuous.
- K and g are non-negative and $g \geq M g$.
The stochastic Perron method works, e.g., under the following assumptions:

- \(\mu \) and \(\sigma \) are Lipschitz continuous.
- \(\Gamma, Z, K, \) and \(g \) are continuous.
- \(K \) and \(g \) are non-negative and \(g \geq \mathcal{M}g \).
- \(Z(x) \) is non-empty and compact for all \(x \in \mathbb{R}^n \).
The stochastic Perron method works, e.g., under the following assumptions:

- μ and σ are Lipschitz continuous.
- Γ, Z, K, and g are continuous.
- K and g are non-negative and $g \geq M g$.
- $Z(x)$ is non-empty and compact for all $x \in \mathbb{R}^n$.
- There exists a function $\Psi \in \mathbb{H}$ with
 \[
 \mathbb{E}\left[\sup_{s \in [t, T]} \left[|\Psi(s, X_{t,x}^\Lambda)| + |\mathcal{M}\Psi(s, X_{t,x}^\Lambda)| \right] \right] < \infty
 \]
 for all $(t, x) \in [0, T) \times \mathbb{R}^n$ and all impulse controls Λ.

Remark: The last two assumptions are e.g. satisfied if there exists a strict supersolution of the QVIs which grows faster at infinity than V.

Sufficient Conditions for this to work

The stochastic Perron method works, e.g., under the following assumptions:

- μ and σ are Lipschitz continuous.
- $\Gamma, Z, K,$ and g are continuous.
- K and g are non-negative and $g \geq Mg$.
- $Z(x)$ is non-empty and compact for all $x \in \mathbb{R}^n$.
- There exists a function $\Psi \in \mathbb{H}$ with
 \[\mathbb{E}\left[\sup_{s \in [t, T]} \left[|\Psi(s, X_{t,x}^\Lambda)| + |M\Psi(s, X_{t,x}^\Lambda)| \right] \right] < \infty \]
 for all $(t, x) \in [0, T) \times \mathbb{R}^n$ and all impulse controls Λ.
- The comparison principle for the QVIs holds.
The stochastic Perron method works, e.g., under the following assumptions:

- μ and σ are Lipschitz continuous.
- Γ, Z, K, and g are continuous.
- K and g are non-negative and $g \geq M g$.
- $Z(x)$ is non-empty and compact for all $x \in \mathbb{R}^n$.
- There exists a function $\Psi \in \mathbb{H}$ with
 \[
 \mathbb{E}\left[\sup_{s \in [t,T]} \left[|\Psi(s, X^\Lambda_t, x)| + |M \Psi(s, X^\Lambda_t, x)| \right] \right] < \infty
 \]
 for all $(t, x) \in [0, T) \times \mathbb{R}^n$ and all impulse controls Λ.
- The comparison principle for the QVIs holds.

Remark: The last two assumptions are e.g. satisfied if there exists a strict supersolution of the QVIs which grows faster at infinity than \mathcal{V}.
Applications and Work in Progress
We have **successfully applied** the method to the following problem:

- An investor can invest in a number of risky assets.
We have successfully applied the method to the following problem:

- An investor can invest in a number \(a \) risky assets.
- Upon purchasing shares of the risky assets worth \(\Delta \) units of money, the investor pays a fee of

\[
\gamma|\Delta| + K.
\]
We have \textbf{successfully applied} the method to the following problem:

- An investor can invest in a number of risky assets.
- Upon purchasing shares of the risky assets worth Δ units of money, the investor pays a fee of $\gamma|\Delta| + K$.
- The objective is to maximize utility of wealth at some terminal time $T > 0$.

\textit{Joint work with Sören Christensen (Hamburg).}
We have successfully applied the method to the following problem:

- An investor can invest in a number of risky assets.
- Upon purchasing shares of the risky assets worth Δ units of money, the investor pays a fee of $\gamma|\Delta| + K$.
- The objective is to maximize utility of wealth at some terminal time $T > 0$.
- It is not possible to solve the problem with classical techniques.
We have **successfully applied** the method to the following problem:

- An investor can invest in a number a risky assets.
- Upon purchasing shares of the risky assets worth Δ units of money, the investor pays a fee of $\gamma|\Delta| + K$.
- The objective is to maximize utility of wealth at some terminal time $T > 0$.
- It is not possible to solve the problem with classical techniques.
- Several additional difficulties arise: Constraint state space, possibly empty impulse sets $Z(x)$, ...
We have **successfully applied** the method to the following problem:

- An investor can invest in a number of risky assets.
- Upon purchasing shares of the risky assets worth Δ units of money, the investor pays a fee of $\gamma|\Delta| + K$.
- The objective is to maximize utility of wealth at some terminal time $T > 0$.
- It is not possible to solve the problem with classical techniques.
- Several additional difficulties arise: Constraint state space, possibly empty impulse sets $Z(x)$, ...
- Joint work with Sören Christensen (Hamburg).
Work in progress:

(1) Extension to **singular control problems**. Joint work with Erhan Bayraktar (Michigan), Sören Christensen (Hamburg), and Frank Seifried.
Work in progress:

(1) Extension to **singular control problems**. Joint work with Erhan Bayraktar (Michigan), Sören Christensen (Hamburg), and Frank Seifried.

(2) Investment problem with **more realistic transaction costs**. Joint work with Frank Seifried and Jonas Jakobs, Lukas Mich, and Thomas Streit (Trier).
Work in progress:

(1) Extension to singular control problems. Joint work with Erhan Bayraktar (Michigan), Sören Christensen (Hamburg), and Frank Seifried.

(2) Investment problem with more realistic transaction costs. Joint work with Frank Seifried and Jonas Jakobs, Lukas Mich, and Thomas Streit (Trier).

(3) Investment problem with non-Markovian asset prices. Joint work with Christoph Czichowsky (London).
Belak, Christensen, Seifried (2016):
A General Verification Result for Stochastic Impulse Control Problems
To appear in SIAM Journal on Control and Optimization

Belak, Christensen (2016):
Utility Maximization in a Factor Model with Constant and Proportional Costs

Available at: www.belak.ch/publications/