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Motivation

The Main Question

Given the possibility of a severe market crash,
how do we optimally invest our money?

More precisely, we assume that

... we are small investors,

... we can trade continuously in time,

... we want to make a long-term investment,

... we want to maximize our wealth at the end of the investment period,

... the market may possibly crash.
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The Merton problem

We consider a simple financial market consisting of a money market account
(or bond) P0 and a stock P1:

dP0(t) = rP0(t)dt, P0(0) = p0,

dP1(t) = αP1(t)dt

+ σP1(t)dW (t),

P1(0) = p1.

Suppose we are given an initial wealth of x > 0. At any point in time we can
choose which fraction π(t) of our wealth we want to invest in the stock. Our
wealth X = Xπ then evolves as

X (0) = x ,

dX (t) = r [1− π(t)]X (t)dt + απ(t)X (t)dt + σπ(t)X (t)dW (t).
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The Merton problem

We say that a trading strategy π is admissible if it is bounded,
right-continuous and leads to a strictly positive wealth process Xπ. We
denote the set of all admissible strategies by A.

Our aim is to maximize our

expected utility of

wealth at some future time
T > 0:

V0(t, x) := sup
π∈A(t,x)

E
[

Up

(
Xπ

t,x(T )
)

]
.

The function Up is called the utility function and models the investor’s risk
preferences. We assume that

Up(x) =

{
1
p
xp, if p < 1, p 6= 0,

log(x), if p = 0.
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The Idea of Dynamic Programming

The dynamic programming principle suggests that for any stopping time
τ ∈ [t,T ] we have

V0(t, x) = sup
π∈A(t,x)

E
[
V0(τ,Xπ

t,x(τ))
]
.

In other words:

1 We should expect the process V0(u,Xπ
t,x(u)) to be a supermartingale for

any π ∈ A(t, x).

2 We should expect the process V0(u,Xπ∗
t,x (u)) to be an honest martingale

for the optimal π∗.
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The Hamilton-Jacobi-Bellman Equation

The dynamic programming principle leads to the following PDE – the
Hamilton-Jacobi-Bellman (HJB) equation:

sup
π

{

∂

∂t
V0 + (r + (α− r)π)x

∂

∂x
V0 +

1

2
σ2π2x2 ∂

2

∂x2
V0

}

≤ 0,

V0(T , x) = Up(x).

This equation is solved explicitly by

V0(t, x) =
1

p
xp exp

{
p

(
r − 1

2(1− p)

(α− r)2

σ2

)
(T − t)

}
and the optimal strategy is given by

π∗0 (t) = πM :=
α− r

(1− p)σ2
.
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The Solution to the Merton Problem
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Crashes in the Merton Model

The Merton model performs well in normal times, but it does not account for
jumps in the stock price. In particular, it ignores the possibility of market
crashes.

The obvious idea is to add a jump component to the stock price process, i.e.

dP1(t) = αP1(t−)dt + σP1(t−)dW (t)− βP1(t−)dN(t).

The portfolio problem in this setting can be solved by similar arguments as in
the Merton model. In particular, it also leads to an optimal strategy which is
constant over time.

Observation: If a crash occurs close to the end of the investment period the
investor will suffer substantial losses.

Christoph Belak Worst-Case Portfolio Optimization



Optimal Investment in Continuous Time
The Worst-Case Approach to Market Crashes

Random Number of Crashes and Bubbles
Proportional Transaction Costs

Crashes in the Merton Model

The Merton model performs well in normal times, but it does not account for
jumps in the stock price. In particular, it ignores the possibility of market
crashes.

The obvious idea is to add a jump component to the stock price process, i.e.

dP1(t) = αP1(t−)dt + σP1(t−)dW (t)− βP1(t−)dN(t).

The portfolio problem in this setting can be solved by similar arguments as in
the Merton model. In particular, it also leads to an optimal strategy which is
constant over time.

Observation: If a crash occurs close to the end of the investment period the
investor will suffer substantial losses.

Christoph Belak Worst-Case Portfolio Optimization



Optimal Investment in Continuous Time
The Worst-Case Approach to Market Crashes

Random Number of Crashes and Bubbles
Proportional Transaction Costs

Crashes in the Merton Model

The Merton model performs well in normal times, but it does not account for
jumps in the stock price. In particular, it ignores the possibility of market
crashes.

The obvious idea is to add a jump component to the stock price process, i.e.

dP1(t) = αP1(t−)dt + σP1(t−)dW (t)− βP1(t−)dN(t).

The portfolio problem in this setting can be solved by similar arguments as in
the Merton model. In particular, it also leads to an optimal strategy which is
constant over time.

Observation: If a crash occurs close to the end of the investment period the
investor will suffer substantial losses.

Christoph Belak Worst-Case Portfolio Optimization



Optimal Investment in Continuous Time
The Worst-Case Approach to Market Crashes

Random Number of Crashes and Bubbles
Proportional Transaction Costs

Crashes in the Merton Model

The Merton model performs well in normal times, but it does not account for
jumps in the stock price. In particular, it ignores the possibility of market
crashes.

The obvious idea is to add a jump component to the stock price process, i.e.

dP1(t) = αP1(t−)dt + σP1(t−)dW (t)− βP1(t−)dN(t).

The portfolio problem in this setting can be solved by similar arguments as in
the Merton model. In particular, it also leads to an optimal strategy which is
constant over time.

Observation: If a crash occurs close to the end of the investment period the
investor will suffer substantial losses.

Christoph Belak Worst-Case Portfolio Optimization



Optimal Investment in Continuous Time
The Worst-Case Approach to Market Crashes

Random Number of Crashes and Bubbles
Proportional Transaction Costs

Overview

1 Optimal Investment in Continuous Time

2 The Worst-Case Approach to Market Crashes

3 Random Number of Crashes and Bubbles

4 Proportional Transaction Costs

Christoph Belak Worst-Case Portfolio Optimization



Optimal Investment in Continuous Time
The Worst-Case Approach to Market Crashes

Random Number of Crashes and Bubbles
Proportional Transaction Costs

The Worst-Case Approach of Korn/Wilmott (2002)

We assume that a crash is given by a pair ϑ = (τ, β̄). At the stopping time τ ,
the stock price crashes by the fraction β̄:

P1(τ) = (1− β̄)P1(τ−).

We assume:

β̄ is bounded from above by some (deterministic) β ∈ (0, 1).

τ > T is possible.

At most one crash may occur.

The investor does not know the distribution of (τ, β̄). Instead, the
investor anticipates the worst-possible crash scenario.

The worst-case optimization problem is given by

V1(t, x) := sup
π1,π0

inf
ϑ

E
[
Up

(
Xπ1,π0,ϑ

t,x (T )
)]
.
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The Indifference Strategy

Idea: Find a strategy which renders the investor indifferent between the
following two scenarios:

1 A crash of maximum size occurs immediately.

2 No crash happens at all.

One can show that the following strategy is an indifference strategy:

∂

∂t
π∗1 (t) =

1

β
(1− π∗1 (t)β)

[
−1

2
(1− p)σ2 (π∗1 (t)− π∗0 (t))

2

]
,

π∗1 (T ) = 0.

Moreover, it is straightforward to verify that this strategy is optimal!
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The Optimal Strategy in the Worst-Case Model
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Discussion

We make the following observations:

The optimal strategy renders the investor indifferent between an
immediate crash of maximum size and no crash at all.

The results can be extended to an arbitrary but fixed number of crashes.

As in the Merton model, the trading speed is of infinite variation. In the
presence of transaction costs the optimal strategy π∗1 is hence not feasible.

Our objective is hence to:

1 extend the model to allow for a random, possibly unbounded number of
crashes, and

2 extend the model to allow for transaction costs.
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1 Optimal Investment in Continuous Time

2 The Worst-Case Approach to Market Crashes

3 Random Number of Crashes and Bubbles

4 Proportional Transaction Costs
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The Market Model

We consider the same asset price dynamics as in the Merton model:

dP0(t) = rP0(t)dt, dP1(t) = αP1(t)dt + σP1(t)dW (t).

Let Z be an observable continuous-time Markov chain with finite state space
E = {0, 1, . . . , d}.

State 0 corresponds to a market regime without a bubble – no crash may
occur.

State i ∈ {1, . . . , d} corresponds to a regime in which a bubble is
present. The bubble may burst, leading to a crash of maximum relative
size βi ≥ 0, i.e.

P1(τ) = (1− βi )P1(τ−), on {Z(τ−) = i}.

After a crash, Z is assumed to jump back to state 0.

We allow for state-dependent market parameters.
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Bubbles and Crashes

Z in state 0

↪→ No crash possible

↓

Z jumps to state i

↪→ Investor receives warning
↪→ Crash of maximum size βi possible

↙ ↘

Crash (τ, βi) occurs

↪→ Stock price crashes
by a fraction of βi
↪→ Z jumps back to
state 0

Z jumps to state j

↪→ Investor receives
new information
↪→ Crash of maximum
size βj possible
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The Worst-Case Problem

In each state i = 0, . . . , d , the investor can choose which fraction πi of her
total wealth X to invest in the stock.

Denote the jump times of Z by (Tk)k∈N. A crash scenario is now a sequence
of stopping times ϑ = (τk)k∈N and a crash of size βi occurs at time τk if and
only if

Tk(ω) ≤ τk(ω) < Tk+1(ω)

on {τk ≤ T} ∩ {Z(τk−) = i > 0} ∩ {βi > 0}.

The Worst-Case Problem

V(t, x , i) = sup
π=(π0,...,πd )

inf
ϑ

E
[
Up

(
Xπ,ϑ

t,x,i (T )
)]
.
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The HJB Equation for States with βi = 0

Whenever βi = 0, the investor does not have to fear a crash. Following the
solution approach as in the Merton model, we expect that V(t, x , i) solves an
HJB equation of a similar form.

Denote by (qi,j)0≤i,j≤d the generator matrix of Z and let

Lπi V =
∂

∂t
V + (ri + (αi − ri )π)x

∂

∂x
V +

1

2
σ2
i π

2x2 ∂
2

∂x2
V, i = 0, . . . , d .

HJB Equation for States with βi = 0

The value function V(·1, ·2, i) and the corresponding optimal strategy π∗i in
state i with βi = 0 can be determined by solving the following HJB equation:

0 ≥

sup
π

[

Lπi V(t, x , i) +
d∑

j=0

qi,jV(t, x , j)

]

.
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The HJB Equation for States with βi > 0

Define the following sets:

A1 :=
{
π :

V(t, x , i)

≤ V(t, (1− πβi )x , 0)
}
,

A2 :=
{
π : Lπi V(t, x , i) +

d∑
j=0

qi,jV(t, x , j) ≥ 0
}
.

The value function V(·, ·, i) and the corresponding optimal strategy π∗i in state
i with βi can be determined by solving the HJB system

0 ≤ sup
π∈A1

[
Lπi V(t, x , i) +

d∑
j=0

qi,jV(t, x , j)
]
,

0 ≤ sup
π∈A2

[
V(t, (1− πβi )x , 0)− V(t, x , i)

]
,

0 = sup
π∈A1

[
Lπi V(t, x , i) +

d∑
j=0

qi,jV(t, x , j)
]

· sup
π∈A2

[
V(t, (1− πβi )x , 0)− V(t, x , i)

]
.
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One more...
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Trading under Proportonial Transaction Costs

Let us now consider the Korn/Wilmott model (one crash only) in the presence
of transaction costs, i.e. we assume that the investor buys and sells shares of
the stock at the price

(1 + λ)P1(t) and (1− µ)P1(t),

respectively, where λ > 0, µ ∈ (0, 1).

Trading strategies are modeled as a pair (L,M). The wealth invested in the
bond and stock is assumed to be given by

dB(t) = rB(t)dt

−(1 + λ)dL(t)

+(1− µ)dM(t),

B(0) = b,

dS(t) = αS(t)dt + σS(t)dW (t)

+dL(t)

−dM(t),

S(0) = s.

L and M are assumed to be non-decreasing càdlàg processes modeling the
cumulative purchases and sales of the stock, respectively.
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Problem Formulation

The investor’s net wealth X in this model is given by

X (t) =

{
B(t) + (1− µ)S(t), if S(t) > 0,

B(t) + (1 + λ)S(t), if S(t) ≤ 0.

The optimization problems in this setting are given by

V0(t, b, s) = sup
(L,M)

E
[
Up

(
X L,M

t,b,s(T )
)]

in the absence of crashes

and

V1(t, b, s) = sup
$1=(L1,M1)
$0=(L0,M0)

inf
τ∈B(t)

E
[
Up

(
X$1,$0,τ

t,b,s (T )
)]

in the presence of crashes.
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Some Intuition

The Merton strategy πM can no longer be optimal. It requires infinite
variation trading and would lead to immediate bankruptcy of the investor.

The costs punish the volume of the transaction.

We hence expect that the investor will try to make small trades for the
transaction costs not to explode.

More precisely, we expect that the investor will try to keep her risky
fraction in a neighborhood of the Merton fraction and only makes small
trades to keep the risky fraction from moving too far away.

There should hence be three regions: A no-trading region, a buying
region and a selling region.
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The HJB Equation in the Absence of Crashes

The HJB equation in the absence of crashes takes the following form

0 = min
{
LntV0(t, b, s),LbuyV0(t, b, s),LsellV0(t, b, s)

}
,

where

LntV = − ∂

∂t
V − rb

∂

∂b
V − αs ∂

∂s
V − 1

2
σ2s2

∂2

∂s2
V,

LbuyV = (1 + λ)
∂

∂b
V − ∂

∂s
V,

LsellV = −(1− µ)
∂

∂b
V +

∂

∂s
V.

Note: We can no longer expect to find an explicit solution. As a matter of
fact, we cannot even expect to find a regular solution!

But: We can show that the the value function is a weak (viscosity) solution of
the HJB equation and determine the trading regions numerically.
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A Numerical Example
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The HJB Equation in the Presence of Crashes

In the presence of crashes, the HJB equation is given by

0 = max

{
V1(t, b, s)− V0(t, b, (1− β)s),

min
{
LntV1(t, b, s),LbuyV1(t, b, s),LsellV1(t, b, s)

}}
.

As in the case without crashes, we can show that V1 solves this equation in the
weak (viscosity) sense.
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Trading Regions in the Presence of Crashes: Long term
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Trading Regions in the Presence of Crashes: Short term
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Conclusion

To sum things up, we have seen that:

Specifying the distribution of a market crash leads to optimal strategies
with undesirable properties. The investor is not protected against the
immediate impact of a crash.

The remedy is to take a worst-case approach, but we have to assume
that the maximum number of crashes in known.

The assumption of a fixed number of crashes can be relaxed and we can
even model financial bubbles.

In the presence of transaction costs, the investor keeps her risky fraction
in a region around the optimal no-cost strategy.

In the presence of crashes, it may sometimes not be optimal to invest any
money in the stock at all.
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